Uncategorized

Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent

  • Steffen, W. Introducing the Anthropocene: The human epoch. Ambio 50, 1784–1787 (2021).

    Article 

    Google Scholar
     

  • Keys, P. W. et al. Anthropocene danger. Nat. Maintain. 2, 667–673 (2019).

    Article 

    Google Scholar
     

  • Bell, G. Evolutionary rescue and the bounds of adaptation. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120080 (2013).

    Article 

    Google Scholar
     

  • Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Feely, R. A. et al. Impression of anthropogenic CO2 on the CaCO3 system within the oceans. Science 305, 362–366 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the opposite CO2 downside. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    Article 

    Google Scholar
     

  • Hill, T. S. & Hoogenboom, M. O. The oblique results of ocean acidification on corals and coral communities. Coral Reefs https://doi.org/10.1007/s00338-022-02286-z (2022).

  • Biagi, E. et al. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis dwelling at CO2 vents. Sci. Whole Environ. 724, 138048 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B. et al. Microbiome neighborhood and complexity point out environmental gradient acclimatisation and potential microbial interplay of endemic coral holobionts within the South China Sea. Sci. Whole Environ. 765, 142690 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future local weather change. Science 344, 895–898 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wooden, R. The ecological evolution of reefs. Annu. Rev. Ecol. Syst. 29, 179–206 (1998).

    Article 

    Google Scholar
     

  • Drake, J. L. et al. How corals made rocks by way of the ages. Glob. Chang. Biol. 26, 31–53 (2020).

    Article 

    Google Scholar
     

  • Stanley, G. D. Photosymbiosis and the evolution of recent coral reefs. Science 312, 857–858 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D. & Miller, D. J. A complete phylogenetic evaluation of the scleractinia (Cnidaria, Anthozoa) primarily based on mitochondrial CO1 sequence information. PLoS One. 5, e11490 (2010).

    Article 

    Google Scholar
     

  • Dubinsky, Z. & Jokiel, P. Ratio of power and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).


    Google Scholar
     

  • Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Gentle and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Frankowiak, Okay., Roniewicz, E. & Stolarski, J. Photosymbiosis in Late Triassic scleractinian corals from the Italian Dolomites. PeerJ 9, e11062 (2021).

    Article 

    Google Scholar
     

  • Davy, S. Okay., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kremer, P. Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. J. Mar. Biol. Assoc. UK. 85, 613–625 (2005).

    Article 

    Google Scholar
     

  • Welsh, D. T., Dunn, R. J. Okay. & Meziane, T. Oxygen and nutrient dynamics of the the other way up jellyfish (Cassiopea sp.) and its affect on benthic nutrient exchanges and first manufacturing. Hydrobiologia 635, 351–362 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the each day contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Ferrier‐Pagès, C. & Leal, M. C. Secure isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740 (2019).

    Article 

    Google Scholar
     

  • Teixidó, N. et al. Ocean acidification causes variable trait shifts in a coral species. Glob. Chang. Biol. 26, 6813–6830 (2020).

    Article 

    Google Scholar
     

  • Fantazzini, P. et al. Beneficial properties and losses of coral skeletal porosity adjustments with ocean acidification acclimation. Nat. Commun. 6, 7785 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Prada, F. et al. Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Sci. Rep. 11, 19927 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kerrison, P., Corridor-Spencer, J. M., Suggett, D. J., Hepburn, L. J. & Steinke, M. Evaluation of pH variability at a coastal CO2 vent for ocean acidification research. Estuar. Coast. Shelf Sci. 94, 129–137 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, V. R., Russell, B. D., Fabricius, Okay. E., Brownlee, C. & Corridor-Spencer, J. M. Temperate and tropical brown macroalgae thrive, regardless of decalcification, alongside pure CO2 gradients. Glob. Chang. Biol. 18, 2792–2803 (2012).

    Article 

    Google Scholar
     

  • Caroselli, E. et al. Low and variable pH decreases recruitment effectivity in populations of a temperate coral naturally current at a CO2 vent. Limnol. Oceanogr. 64, 1059–1069 (2019).

    Article 
    CAS 

    Google Scholar
     

  • González-Delgado, S. & Hernández, J. C. The significance of pure acidified methods within the examine of ocean acidification: what have we discovered? Adv. Mar. Biol. 80, 57–99 (2018).

    Article 

    Google Scholar
     

  • Capaccioni, B., Tassi, F., Vaselli, O., Tedesco, D. & Poreda, R. Submarine fuel burst at Panarea Island (southern Italy) on 3 November 2002: A magmatic versus hydrothermal episode. J. Geophys. Res. 112, B05201 (2007).


    Google Scholar
     

  • Reggi, M. et al. Biomineralization in mediterranean corals: The function of the intraskeletal natural matrix. Cryst. Development Des. 14, 4310–4320 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Prada, F. et al. Ocean warming and acidification synergistically improve coral mortality. Sci. Rep. 7, 1–10 (2017).

    Article 

    Google Scholar
     

  • Goffredo, S. et al. Biomineralization management associated to inhabitants density underneath ocean acidification. Nat. Clim. Chang. 4, 593–597 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wall, M. et al. Linking inner carbonate chemistry regulation and calcification in corals rising at a Mediterranean CO2 vent. Entrance. Mar. Sci. 6, 699 (2019).

    Article 

    Google Scholar
     

  • Zohary, T., Erez, J., Gophen, M., Berman-Frank, I. & Stiller, M. Seasonality of secure carbon isotopes inside the pelagic meals net of Lake Kinneret. Limnol. Oceanogr. 39, 1030–1043 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Xu, S. et al. Spatial variations within the trophic standing of Favia palauensis corals within the South China Sea: Insights into their totally different adaptabilities underneath contrasting environmental situations. Sci. China Earth Sci. 64, 839–852 (2021).

    Article 

    Google Scholar
     

  • Horwitz, R., Borell, E. M., Yam, R., Shemesh, A. & Superb, M. Pure excessive pCO2 will increase autotrophy in Anemonia viridis (Anthozoa) as revealed from secure isotope (C, N) evaluation. Sci. Rep. 5, 1–9 (2015).

    Article 

    Google Scholar
     

  • Chen, B., Zou, D., Zhu, M. & Yang, Y. Results of CO2 ranges and lightweight intensities on progress and amino acid contents in crimson seaweed Gracilaria lemaneiformis. Aquac. Res. 48, 2683–2690 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Winters, G., Beer, S., Zvi, B., Brickner, I. & Loya, Y. Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella dimension, pigmentation, location and clade. Mar. Ecol. Prog. Ser. 384, 107–119 (2009).

    Article 

    Google Scholar
     

  • Fitt, W. Okay., McFarland, F. Okay., Warner, M. E. & Chilcoat, G. C. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 45, 677–685 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wangpraseurt, D., Larkum, A. W. D., Ralph, P. J. & Kühl, M. Gentle gradients and optical microniches in coral tissues. Entrance. Microbiol. 3, 1–9 (2012).

    Article 

    Google Scholar
     

  • Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta. 74, 4988–5001 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Scucchia, F., Malik, A., Zaslansky, P., Putnam, H. M. & Mass, T. Mixed responses of major coral polyps and their algal endosymbionts to lowering seawater pH. Proc. R. Soc. B Biol. Sci. 288, 20210328 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Anthony, Okay. R. N., Connolly, S. R. & Willis, B. L. Comparative evaluation of power allocation to tissue and skeletal progress in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).

    Article 

    Google Scholar
     

  • LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and variety of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Howells, E. J. et al. Coral thermal tolerance formed by native adaptation of photosymbionts. Nat. Clim. Chang. 2, 116–120 (2012).

    Article 

    Google Scholar
     

  • Brading, P. et al. Differential results of ocean acidification on progress and photosynthesis amongst phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 56, 927–938 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio primarily based on chemical information from isopycnal surfaces. J. Geophys. Res. 90, 6907 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. Modifications of carbon to nitrogen ratio in particulate natural matter within the marine mesopelagic zone: A case from the South China Sea. Mar. Chem. 231, 103930 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Crawford, D. W. et al. Low particulate carbon to nitrogen ratios in marine floor waters of the Arctic. Glob. Biogeochem. Cycles. 29, 2021–2033 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kikumoto, R. et al. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Res. 25, 1057–1069 (2014).

    Article 
    CAS 

    Google Scholar
     

  • DeNiro, M. J. & Epstein, S. Affect of weight loss plan on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Benavides, M., Bednarz, V. N. & Ferrier-Pagès, C. Diazotrophs: Missed key gamers inside the coral symbiosis and tropical reef ecosystems? Entrance. Mar. Sci. 4, 10 (2017).

    Article 

    Google Scholar
     

  • Wannicke, N., Frey, C., Regulation, C. S. & Voss, M. The response of the marine nitrogen cycle to ocean acidification. Glob. Chang. Biol. 24, 5031–5043 (2018).

    Article 

    Google Scholar
     

  • Bourne, D. G., Morrow, Okay. M. & Webster, N. S. Insights into the coral microbiome: underpinning the well being and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Palladino, G. et al. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea dwelling alongside a pure CO2 gradient. ISME Commun. 2, 65 (2022).

    Article 

    Google Scholar
     

  • Muscatine, L. et al. Secure isotopes (δ13C and δ15N) of natural matrix from coral skeleton. Proc. Natl Acad. Sci. 102, 1525–1530 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria offers a supply of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Alamaru, A., Loya, Y., Brokovich, E., Yam, R. & Shemesh, A. Carbon and nitrogen utilization in two species of Pink Sea corals alongside a depth gradient: Insights from secure isotope evaluation of whole natural materials and lipids. Geochim. Cosmochim. Acta. 73, 5333–5342 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Lesser, M. P., Morrow, Okay. M., Pankey, S. M. & Noonan, S. H. C. Diazotroph range and nitrogen fixation within the coral Stylophora pistillata from the Nice Barrier Reef. ISME J. 12, 813–824 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Marcelino, V. R., Morrow, Okay. M., Oppen, M. J. H., Bourne, D. G. & Verbruggen, H. Variety and stability of coral endolithic microbial communities at a naturally excessive pCO2 reef. Mol. Ecol. 26, 5344–5357 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen biking in corals: the important thing to understanding holobiont functioning? Tendencies Microbiol. 23, 490–497 (2015).

    Article 

    Google Scholar
     

  • Santos, H. F. et al. Local weather change impacts key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).

    Article 

    Google Scholar
     

  • Olson, N. D., Ainsworth, T. D., Gates, R. D. & Takabayashi, M. Diazotrophic micro organism related to Hawaiian Montipora corals: Variety and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Bio. Ecol. 371, 140–146 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Results of ocean acidification on carbon and nitrogen fixation within the hermatypic coral Galaxea fascicularis. Entrance. Mar. Sci. 8, 644965 (2021).

    Article 

    Google Scholar
     

  • Lewis, E. & Wallace, D. Program developed for CO2 system calculations. Ornl/Cdiac-105 1–21 (1998).

  • Dickson, A. G. & Millero, F. J. A comparability of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Half A. Oceanogr. Res. Pap. 34, 1733–1743 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Dickson, A. G. Thermodynamics of the dissociation of boric acid in potassium chloride options from 273.15 to 318.15 Okay. J. Chem. Eng. Knowledge. 35, 253–257 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the obvious dissociation constants of carbonic acid in seawater at atmospheric strain. Limnol. Oceanogr. 18, 897–907 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Ivancic, I. & Degobbis, D. An optimum handbook process for ammonia evaluation in pure waters by the indophenol blue technique. Water Res. 18, 1143–1147 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Parson, T. R., Maita, Y. & Llli, C. M. A handbook of chemical & organic strategies for seawater evaluation. (Elsevier, 1984). https://doi.org/10.1016/C2009-0-07774-5

  • Schreiber, U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse technique: an summary. in Chlorophyll a Fluorescence 1367, 279–319 (Springer Netherlands, 2004).

  • Grover, R., Maguer, J. F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: Impact of feeding, gentle, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).

    Article 

    Google Scholar
     

  • Tremblay, P., Grover, R., Maguer, J. F., Hoogenboom, M. & Ferrier-Pagès, C. Carbon translocation from symbiont to host is dependent upon irradiance and meals availability within the tropical coral Stylophora pistillata. Coral Reefs. 33, 1–13 (2014).

    Article 

    Google Scholar
     

  • Pupier, C. A. et al. Productiveness and carbon fluxes rely upon species and symbiont density in gentle coral symbioses. Sci. Rep. 9, 17819 (2019).

    Article 

    Google Scholar
     

  • Ritchie, R. J. Common chlorophyll equations for estimating chlorophylls a, b, c, and d and whole chlorophylls in pure assemblages of photosynthetic organisms utilizing acetone, methanol, or ethanol solvents. Photosynthetica 46, 115–126 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Goffredo, S., Arnone, S. & Zaccanti, F. Sexual replica within the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar. Ecol. Prog. Ser. 229, 83–94 (2002).

    Article 

    Google Scholar
     

  • Barshis, D. J. et al. Genomic foundation for coral resilience to local weather change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Moore, R. B. Extremely organized construction within the non-coding area of the psbA minicircle from clade C Symbiodinium. Int. J. Syst. Evol. Microbiol. 53, 1725–1734 (2003).

    Article 
    CAS 

    Google Scholar
     

  • LaJeunesse, T. C. & Thornhill, D. J. Improved decision of reef-coral endosymbiont (Symbiodinium) species range, ecology, and evolution by way of psbA non-coding area genotyping. PLoS One. 6, e29013 (2011).

    Article 
    CAS 

    Google Scholar
     

  • LaJeunesse, T. C. et al. Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres. Eur. J. Phycol. 57, 166–180 (2022).

    Article 

    Google Scholar
     

  • Anderson, M. J. PERMANOVA: a FORTRAN pc program for permutational multivariate evaluation of variance. Wiley StatsRef: Statistics Reference On-line (2005).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *