Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent
Steffen, W. Introducing the Anthropocene: The human epoch. Ambio 50, 1784–1787 (2021).
Keys, P. W. et al. Anthropocene danger. Nat. Maintain. 2, 667–673 (2019).
Bell, G. Evolutionary rescue and the bounds of adaptation. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120080 (2013).
Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).
Feely, R. A. et al. Impression of anthropogenic CO2 on the CaCO3 system within the oceans. Science 305, 362–366 (2004).
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the opposite CO2 downside. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
Hill, T. S. & Hoogenboom, M. O. The oblique results of ocean acidification on corals and coral communities. Coral Reefs https://doi.org/10.1007/s00338-022-02286-z (2022).
Biagi, E. et al. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis dwelling at CO2 vents. Sci. Whole Environ. 724, 138048 (2020).
Chen, B. et al. Microbiome neighborhood and complexity point out environmental gradient acclimatisation and potential microbial interplay of endemic coral holobionts within the South China Sea. Sci. Whole Environ. 765, 142690 (2021).
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future local weather change. Science 344, 895–898 (2014).
Wooden, R. The ecological evolution of reefs. Annu. Rev. Ecol. Syst. 29, 179–206 (1998).
Drake, J. L. et al. How corals made rocks by way of the ages. Glob. Chang. Biol. 26, 31–53 (2020).
Stanley, G. D. Photosymbiosis and the evolution of recent coral reefs. Science 312, 857–858 (2006).
Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D. & Miller, D. J. A complete phylogenetic evaluation of the scleractinia (Cnidaria, Anthozoa) primarily based on mitochondrial CO1 sequence information. PLoS One. 5, e11490 (2010).
Dubinsky, Z. & Jokiel, P. Ratio of power and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).
Falkowski, P. G., Dubinsky, Z., Muscatine, L. & Porter, J. W. Gentle and the bioenergetics of a symbiotic coral. Bioscience 34, 705–709 (1984).
Frankowiak, Okay., Roniewicz, E. & Stolarski, J. Photosymbiosis in Late Triassic scleractinian corals from the Italian Dolomites. PeerJ 9, e11062 (2021).
Davy, S. Okay., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).
Kremer, P. Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. J. Mar. Biol. Assoc. UK. 85, 613–625 (2005).
Welsh, D. T., Dunn, R. J. Okay. & Meziane, T. Oxygen and nutrient dynamics of the the other way up jellyfish (Cassiopea sp.) and its affect on benthic nutrient exchanges and first manufacturing. Hydrobiologia 635, 351–362 (2009).
Muscatine, L., McCloskey, L. R. & Marian, R. E. Estimating the each day contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).
Ferrier‐Pagès, C. & Leal, M. C. Secure isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740 (2019).
Teixidó, N. et al. Ocean acidification causes variable trait shifts in a coral species. Glob. Chang. Biol. 26, 6813–6830 (2020).
Fantazzini, P. et al. Beneficial properties and losses of coral skeletal porosity adjustments with ocean acidification acclimation. Nat. Commun. 6, 7785 (2015).
Prada, F. et al. Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Sci. Rep. 11, 19927 (2021).
Kerrison, P., Corridor-Spencer, J. M., Suggett, D. J., Hepburn, L. J. & Steinke, M. Evaluation of pH variability at a coastal CO2 vent for ocean acidification research. Estuar. Coast. Shelf Sci. 94, 129–137 (2011).
Johnson, V. R., Russell, B. D., Fabricius, Okay. E., Brownlee, C. & Corridor-Spencer, J. M. Temperate and tropical brown macroalgae thrive, regardless of decalcification, alongside pure CO2 gradients. Glob. Chang. Biol. 18, 2792–2803 (2012).
Caroselli, E. et al. Low and variable pH decreases recruitment effectivity in populations of a temperate coral naturally current at a CO2 vent. Limnol. Oceanogr. 64, 1059–1069 (2019).
González-Delgado, S. & Hernández, J. C. The significance of pure acidified methods within the examine of ocean acidification: what have we discovered? Adv. Mar. Biol. 80, 57–99 (2018).
Capaccioni, B., Tassi, F., Vaselli, O., Tedesco, D. & Poreda, R. Submarine fuel burst at Panarea Island (southern Italy) on 3 November 2002: A magmatic versus hydrothermal episode. J. Geophys. Res. 112, B05201 (2007).
Reggi, M. et al. Biomineralization in mediterranean corals: The function of the intraskeletal natural matrix. Cryst. Development Des. 14, 4310–4320 (2014).
Prada, F. et al. Ocean warming and acidification synergistically improve coral mortality. Sci. Rep. 7, 1–10 (2017).
Goffredo, S. et al. Biomineralization management associated to inhabitants density underneath ocean acidification. Nat. Clim. Chang. 4, 593–597 (2014).
Wall, M. et al. Linking inner carbonate chemistry regulation and calcification in corals rising at a Mediterranean CO2 vent. Entrance. Mar. Sci. 6, 699 (2019).
Zohary, T., Erez, J., Gophen, M., Berman-Frank, I. & Stiller, M. Seasonality of secure carbon isotopes inside the pelagic meals net of Lake Kinneret. Limnol. Oceanogr. 39, 1030–1043 (1994).
Xu, S. et al. Spatial variations within the trophic standing of Favia palauensis corals within the South China Sea: Insights into their totally different adaptabilities underneath contrasting environmental situations. Sci. China Earth Sci. 64, 839–852 (2021).
Horwitz, R., Borell, E. M., Yam, R., Shemesh, A. & Superb, M. Pure excessive pCO2 will increase autotrophy in Anemonia viridis (Anthozoa) as revealed from secure isotope (C, N) evaluation. Sci. Rep. 5, 1–9 (2015).
Chen, B., Zou, D., Zhu, M. & Yang, Y. Results of CO2 ranges and lightweight intensities on progress and amino acid contents in crimson seaweed Gracilaria lemaneiformis. Aquac. Res. 48, 2683–2690 (2017).
Winters, G., Beer, S., Zvi, B., Brickner, I. & Loya, Y. Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella dimension, pigmentation, location and clade. Mar. Ecol. Prog. Ser. 384, 107–119 (2009).
Fitt, W. Okay., McFarland, F. Okay., Warner, M. E. & Chilcoat, G. C. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr. 45, 677–685 (2000).
Wangpraseurt, D., Larkum, A. W. D., Ralph, P. J. & Kühl, M. Gentle gradients and optical microniches in coral tissues. Entrance. Microbiol. 3, 1–9 (2012).
Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta. 74, 4988–5001 (2010).
Scucchia, F., Malik, A., Zaslansky, P., Putnam, H. M. & Mass, T. Mixed responses of major coral polyps and their algal endosymbionts to lowering seawater pH. Proc. R. Soc. B Biol. Sci. 288, 20210328 (2021).
Anthony, Okay. R. N., Connolly, S. R. & Willis, B. L. Comparative evaluation of power allocation to tissue and skeletal progress in corals. Limnol. Oceanogr. 47, 1417–1429 (2002).
LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and variety of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018).
Howells, E. J. et al. Coral thermal tolerance formed by native adaptation of photosymbionts. Nat. Clim. Chang. 2, 116–120 (2012).
Brading, P. et al. Differential results of ocean acidification on progress and photosynthesis amongst phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 56, 927–938 (2011).
Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio primarily based on chemical information from isopycnal surfaces. J. Geophys. Res. 90, 6907 (1985).
Xu, Z. et al. Modifications of carbon to nitrogen ratio in particulate natural matter within the marine mesopelagic zone: A case from the South China Sea. Mar. Chem. 231, 103930 (2021).
Crawford, D. W. et al. Low particulate carbon to nitrogen ratios in marine floor waters of the Arctic. Glob. Biogeochem. Cycles. 29, 2021–2033 (2015).
Kikumoto, R. et al. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Res. 25, 1057–1069 (2014).
DeNiro, M. J. & Epstein, S. Affect of weight loss plan on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).
Benavides, M., Bednarz, V. N. & Ferrier-Pagès, C. Diazotrophs: Missed key gamers inside the coral symbiosis and tropical reef ecosystems? Entrance. Mar. Sci. 4, 10 (2017).
Wannicke, N., Frey, C., Regulation, C. S. & Voss, M. The response of the marine nitrogen cycle to ocean acidification. Glob. Chang. Biol. 24, 5031–5043 (2018).
Bourne, D. G., Morrow, Okay. M. & Webster, N. S. Insights into the coral microbiome: underpinning the well being and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).
Palladino, G. et al. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea dwelling alongside a pure CO2 gradient. ISME Commun. 2, 65 (2022).
Muscatine, L. et al. Secure isotopes (δ13C and δ15N) of natural matrix from coral skeleton. Proc. Natl Acad. Sci. 102, 1525–1530 (2005).
Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria offers a supply of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).
Alamaru, A., Loya, Y., Brokovich, E., Yam, R. & Shemesh, A. Carbon and nitrogen utilization in two species of Pink Sea corals alongside a depth gradient: Insights from secure isotope evaluation of whole natural materials and lipids. Geochim. Cosmochim. Acta. 73, 5333–5342 (2009).
Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).
Lesser, M. P., Morrow, Okay. M., Pankey, S. M. & Noonan, S. H. C. Diazotroph range and nitrogen fixation within the coral Stylophora pistillata from the Nice Barrier Reef. ISME J. 12, 813–824 (2018).
Marcelino, V. R., Morrow, Okay. M., Oppen, M. J. H., Bourne, D. G. & Verbruggen, H. Variety and stability of coral endolithic microbial communities at a naturally excessive pCO2 reef. Mol. Ecol. 26, 5344–5357 (2017).
Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen biking in corals: the important thing to understanding holobiont functioning? Tendencies Microbiol. 23, 490–497 (2015).
Santos, H. F. et al. Local weather change impacts key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).
Olson, N. D., Ainsworth, T. D., Gates, R. D. & Takabayashi, M. Diazotrophic micro organism related to Hawaiian Montipora corals: Variety and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Bio. Ecol. 371, 140–146 (2009).
Zheng, X. et al. Results of ocean acidification on carbon and nitrogen fixation within the hermatypic coral Galaxea fascicularis. Entrance. Mar. Sci. 8, 644965 (2021).
Lewis, E. & Wallace, D. Program developed for CO2 system calculations. Ornl/Cdiac-105 1–21 (1998).
Dickson, A. G. & Millero, F. J. A comparability of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Half A. Oceanogr. Res. Pap. 34, 1733–1743 (1987).
Dickson, A. G. Thermodynamics of the dissociation of boric acid in potassium chloride options from 273.15 to 318.15 Okay. J. Chem. Eng. Knowledge. 35, 253–257 (1990).
Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the obvious dissociation constants of carbonic acid in seawater at atmospheric strain. Limnol. Oceanogr. 18, 897–907 (1973).
Ivancic, I. & Degobbis, D. An optimum handbook process for ammonia evaluation in pure waters by the indophenol blue technique. Water Res. 18, 1143–1147 (1984).
Parson, T. R., Maita, Y. & Llli, C. M. A handbook of chemical & organic strategies for seawater evaluation. (Elsevier, 1984). https://doi.org/10.1016/C2009-0-07774-5
Schreiber, U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse technique: an summary. in Chlorophyll a Fluorescence 1367, 279–319 (Springer Netherlands, 2004).
Grover, R., Maguer, J. F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata: Impact of feeding, gentle, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).
Tremblay, P., Grover, R., Maguer, J. F., Hoogenboom, M. & Ferrier-Pagès, C. Carbon translocation from symbiont to host is dependent upon irradiance and meals availability within the tropical coral Stylophora pistillata. Coral Reefs. 33, 1–13 (2014).
Pupier, C. A. et al. Productiveness and carbon fluxes rely upon species and symbiont density in gentle coral symbioses. Sci. Rep. 9, 17819 (2019).
Ritchie, R. J. Common chlorophyll equations for estimating chlorophylls a, b, c, and d and whole chlorophylls in pure assemblages of photosynthetic organisms utilizing acetone, methanol, or ethanol solvents. Photosynthetica 46, 115–126 (2008).
Goffredo, S., Arnone, S. & Zaccanti, F. Sexual replica within the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar. Ecol. Prog. Ser. 229, 83–94 (2002).
Barshis, D. J. et al. Genomic foundation for coral resilience to local weather change. Proc. Natl Acad. Sci. 110, 1387–1392 (2013).
Moore, R. B. Extremely organized construction within the non-coding area of the psbA minicircle from clade C Symbiodinium. Int. J. Syst. Evol. Microbiol. 53, 1725–1734 (2003).
LaJeunesse, T. C. & Thornhill, D. J. Improved decision of reef-coral endosymbiont (Symbiodinium) species range, ecology, and evolution by way of psbA non-coding area genotyping. PLoS One. 6, e29013 (2011).
LaJeunesse, T. C. et al. Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres. Eur. J. Phycol. 57, 166–180 (2022).
Anderson, M. J. PERMANOVA: a FORTRAN pc program for permutational multivariate evaluation of variance. Wiley StatsRef: Statistics Reference On-line (2005).
